Micropython学习交流群 学习QQ群:786510434 提供多种固件下载和学习交流。

Micropython-扇贝物联 QQ群:31324057 扇贝物联是一个让你与智能设备沟通更方便的物联网云平台

Micropython学习交流群 学习QQ群:468985481 学习交流ESP8266、ESP32、ESP8285、wifi模块开发交流、物联网。

Micropython老哥俩的IT农场分享QQ群:929132891 为喜欢科创制作的小白们分享一些自制的计算机软硬件免费公益课程,由两位多年从事IT研发的中年大叔发起。

Micropython ESP频道

micropython esp32 VL53L0X V2激光测距模块 ToF飞行时间测距


VL53L0X V2激光测距模块 ToF飞行时间测距


VL53L0X V2激光测距传感器模块

  VL53L0X飞行时间测距传感器是新一代激光测距模块,VL53LOX是完全集成的传感器,配有嵌入式红外、人眼安全激光,先进的滤波器和超高速光子探测阵列,测量距离更长,速度和精度更高。

  VL53L0X的感测能力可以支持各种功能,包括各种创新用户界面的手势感测或接近检测,扫地机器人、服务性机器人的障碍物探测与防撞系统,家电感应面版、笔记本电脑的用户存在检测或电源开关监控器,以及无人机和物联网(IoT)产品等。

产品参数

1.工作电压:3~5V

2.通信方式:IIC

3.测量绝对距离:2m

4.Xshutdown(复位)/GPIO(中断)

5.尺寸25MM*10.7MM


Snipaste_2023-07-01_22-48-41.png

from machine import I2C, Pin
from time import sleep
from vl53l0x import VL53L0X
import sys
# construct a software I2C bus
i2c = I2C(scl=Pin(5), sda=Pin(4), freq=100000)
sensor = VL53L0X(i2c, address = 0x29)

while True:
    sleep(.01)
    print(sensor.read()-40, "mm")


vl53l0x.py

from micropython import const
import ustruct
import utime
# from machine import Timer
# import time

_IO_TIMEOUT = 1000
_SYSRANGE_START = const(0x00)
_EXTSUP_HV = const(0x89)
_MSRC_CONFIG = const(0x60)
_FINAL_RATE_RTN_LIMIT = const(0x44)
_SYSTEM_SEQUENCE = const(0x01)
_SPAD_REF_START = const(0x4f)
_SPAD_ENABLES = const(0xb0)
_REF_EN_START_SELECT = const(0xb6)
_SPAD_NUM_REQUESTED = const(0x4e)
_INTERRUPT_GPIO = const(0x0a)
_INTERRUPT_CLEAR = const(0x0b)
_GPIO_MUX_ACTIVE_HIGH = const(0x84)
_RESULT_INTERRUPT_STATUS = const(0x13)
_RESULT_RANGE_STATUS = const(0x14)
_OSC_CALIBRATE = const(0xf8)
_MEASURE_PERIOD = const(0x04)

SYSRANGE_START = 0x00

SYSTEM_THRESH_HIGH = 0x0C
SYSTEM_THRESH_LOW = 0x0E

SYSTEM_SEQUENCE_CONFIG = 0x01
SYSTEM_RANGE_CONFIG = 0x09
SYSTEM_INTERMEASUREMENT_PERIOD = 0x04

SYSTEM_INTERRUPT_CONFIG_GPIO = 0x0A

GPIO_HV_MUX_ACTIVE_HIGH = 0x84

SYSTEM_INTERRUPT_CLEAR = 0x0B

RESULT_INTERRUPT_STATUS = 0x13
RESULT_RANGE_STATUS = 0x14

RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN = 0xBC
RESULT_CORE_RANGING_TOTAL_EVENTS_RTN = 0xC0
RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF = 0xD0
RESULT_CORE_RANGING_TOTAL_EVENTS_REF = 0xD4
RESULT_PEAK_SIGNAL_RATE_REF = 0xB6

ALGO_PART_TO_PART_RANGE_OFFSET_MM = 0x28

I2C_SLAVE_DEVICE_ADDRESS = 0x8A

MSRC_CONFIG_CONTROL = 0x60

PRE_RANGE_CONFIG_MIN_SNR = 0x27
PRE_RANGE_CONFIG_VALID_PHASE_LOW = 0x56
PRE_RANGE_CONFIG_VALID_PHASE_HIGH = 0x57
PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT = 0x64

FINAL_RANGE_CONFIG_MIN_SNR = 0x67
FINAL_RANGE_CONFIG_VALID_PHASE_LOW = 0x47
FINAL_RANGE_CONFIG_VALID_PHASE_HIGH = 0x48
FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT = 0x44

PRE_RANGE_CONFIG_SIGMA_THRESH_HI = 0x61
PRE_RANGE_CONFIG_SIGMA_THRESH_LO = 0x62

PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x50
PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x51
PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x52

SYSTEM_HISTOGRAM_BIN = 0x81
HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT = 0x33
HISTOGRAM_CONFIG_READOUT_CTRL = 0x55

FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x70
FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x71
FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x72
CROSSTALK_COMPENSATION_PEAK_RATE_MCPS = 0x20

MSRC_CONFIG_TIMEOUT_MACROP = 0x46

SOFT_RESET_GO2_SOFT_RESET_N = 0xBF
IDENTIFICATION_MODEL_ID = 0xC0
IDENTIFICATION_REVISION_ID = 0xC2

OSC_CALIBRATE_VAL = 0xF8

GLOBAL_CONFIG_VCSEL_WIDTH = 0x32
GLOBAL_CONFIG_SPAD_ENABLES_REF_0 = 0xB0
GLOBAL_CONFIG_SPAD_ENABLES_REF_1 = 0xB1
GLOBAL_CONFIG_SPAD_ENABLES_REF_2 = 0xB2
GLOBAL_CONFIG_SPAD_ENABLES_REF_3 = 0xB3
GLOBAL_CONFIG_SPAD_ENABLES_REF_4 = 0xB4
GLOBAL_CONFIG_SPAD_ENABLES_REF_5 = 0xB5

GLOBAL_CONFIG_REF_EN_START_SELECT = 0xB6
DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD = 0x4E
DYNAMIC_SPAD_REF_EN_START_OFFSET = 0x4F
POWER_MANAGEMENT_GO1_POWER_FORCE = 0x80

VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV = 0x89

ALGO_PHASECAL_LIM = 0x30
ALGO_PHASECAL_CONFIG_TIMEOUT = 0x30


class TimeoutError(RuntimeError):
    pass


class VL53L0X():
    def __init__(self, i2c, address=0x29):
        self.i2c = i2c
        self.address = address
        utime.sleep_ms(100) # give the I2C time to init
        self.init()
        self._started = False
        self.measurement_timing_budget_us = 0
        self.set_measurement_timing_budget(self.measurement_timing_budget_us)
        self.enables = {"tcc": 0,
                        "dss": 0,
                        "msrc": 0,
                        "pre_range": 0,
                        "final_range": 0}
        self.timeouts = {"pre_range_vcsel_period_pclks": 0,
                         "msrc_dss_tcc_mclks": 0,
                         "msrc_dss_tcc_us": 0,
                         "pre_range_mclks": 0,
                         "pre_range_us": 0,
                         "final_range_vcsel_period_pclks": 0,
                         "final_range_mclks": 0,
                         "final_range_us": 0
                         }
        self.vcsel_period_type = ["VcselPeriodPreRange", "VcselPeriodFinalRange"]

    def ping(self):
        self.start()
        distance = self.read()
        self.stop()
        return distance

    def _registers(self, register, values=None, struct='B'):
        if values is None:
            size = ustruct.calcsize(struct)
            data = self.i2c.readfrom_mem(self.address, register, size)
            values = ustruct.unpack(struct, data)
            return values
        data = ustruct.pack(struct, *values)
        self.i2c.writeto_mem(self.address, register, data)

    def _register(self, register, value=None, struct='B'):
        if value is None:
            return self._registers(register, struct=struct)[0]
        self._registers(register, (value,), struct=struct)

    def _flag(self, register=0x00, bit=0, value=None):
        data = self._register(register)
        mask = 1 << bit
        if value is None:
            return bool(data & mask)
        elif value:
            data |= mask
        else:
            data &= ~mask
        self._register(register, data)

    def _config(self, *config):
        for register, value in config:
            self._register(register, value)

    def init(self, power2v8=True):
        self._flag(_EXTSUP_HV, 0, power2v8)

        # I2C standard mode
        self._config(
            (0x88, 0x00),

            (0x80, 0x01),
            (0xff, 0x01),
            (0x00, 0x00),
        )
        self._stop_variable = self._register(0x91)
        self._config(
            (0x00, 0x01),
            (0xff, 0x00),
            (0x80, 0x00),
        )

        # disable signal_rate_msrc and signal_rate_pre_range limit checks
        self._flag(_MSRC_CONFIG, 1, True)
        self._flag(_MSRC_CONFIG, 4, True)

        # rate_limit = 0.25
        self._register(_FINAL_RATE_RTN_LIMIT, int(0.1 * (1 << 7)),
                       struct='>H')

        self._register(_SYSTEM_SEQUENCE, 0xff)

        spad_count, is_aperture = self._spad_info()
        spad_map = bytearray(self._registers(_SPAD_ENABLES, struct='6B'))

        # set reference spads
        self._config(
            (0xff, 0x01),
            (_SPAD_REF_START, 0x00),
            (_SPAD_NUM_REQUESTED, 0x2c),
            (0xff, 0x00),
            (_REF_EN_START_SELECT, 0xb4),
        )

        spads_enabled = 0
        for i in range(48):
            if i < 12 and is_aperture or spads_enabled >= spad_count:
                spad_map[i // 8] &= ~(1 << (i >> 2))
            elif spad_map[i // 8] & (1 << (i >> 2)):
                spads_enabled += 1

        self._registers(_SPAD_ENABLES, spad_map, struct='6B')

        self._config(
            (0xff, 0x01),
            (0x00, 0x00),

            (0xff, 0x00),
            (0x09, 0x00),
            (0x10, 0x00),
            (0x11, 0x00),

            (0x24, 0x01),
            (0x25, 0xFF),
            (0x75, 0x00),

            (0xFF, 0x01),
            (0x4E, 0x2C),
            (0x48, 0x00),
            (0x30, 0x20),

            (0xFF, 0x00),
            (0x30, 0x09),
            (0x54, 0x00),
            (0x31, 0x04),
            (0x32, 0x03),
            (0x40, 0x83),
            (0x46, 0x25),
            (0x60, 0x00),
            (0x27, 0x00),
            (0x50, 0x06),
            (0x51, 0x00),
            (0x52, 0x96),
            (0x56, 0x08),
            (0x57, 0x30),
            (0x61, 0x00),
            (0x62, 0x00),
            (0x64, 0x00),
            (0x65, 0x00),
            (0x66, 0xA0),

            (0xFF, 0x01),
            (0x22, 0x32),
            (0x47, 0x14),
            (0x49, 0xFF),
            (0x4A, 0x00),

            (0xFF, 0x00),
            (0x7A, 0x0A),
            (0x7B, 0x00),
            (0x78, 0x21),

            (0xFF, 0x01),
            (0x23, 0x34),
            (0x42, 0x00),
            (0x44, 0xFF),
            (0x45, 0x26),
            (0x46, 0x05),
            (0x40, 0x40),
            (0x0E, 0x06),
            (0x20, 0x1A),
            (0x43, 0x40),

            (0xFF, 0x00),
            (0x34, 0x03),
            (0x35, 0x44),

            (0xFF, 0x01),
            (0x31, 0x04),
            (0x4B, 0x09),
            (0x4C, 0x05),
            (0x4D, 0x04),

            (0xFF, 0x00),
            (0x44, 0x00),
            (0x45, 0x20),
            (0x47, 0x08),
            (0x48, 0x28),
            (0x67, 0x00),
            (0x70, 0x04),
            (0x71, 0x01),
            (0x72, 0xFE),
            (0x76, 0x00),
            (0x77, 0x00),

            (0xFF, 0x01),
            (0x0D, 0x01),

            (0xFF, 0x00),
            (0x80, 0x01),
            (0x01, 0xF8),

            (0xFF, 0x01),
            (0x8E, 0x01),
            (0x00, 0x01),
            (0xFF, 0x00),
            (0x80, 0x00),
        )

        self._register(_INTERRUPT_GPIO, 0x04)
        self._flag(_GPIO_MUX_ACTIVE_HIGH, 4, False)
        self._register(_INTERRUPT_CLEAR, 0x01)

        # XXX Need to implement this.
        # budget = self._timing_budget()
        # self._register(_SYSTEM_SEQUENCE, 0xe8)
        # self._timing_budget(budget)

        self._register(_SYSTEM_SEQUENCE, 0x01)
        self._calibrate(0x40)
        self._register(_SYSTEM_SEQUENCE, 0x02)
        self._calibrate(0x00)

        self._register(_SYSTEM_SEQUENCE, 0xe8)

    def _spad_info(self):
        self._config(
            (0x80, 0x01),
            (0xff, 0x01),
            (0x00, 0x00),

            (0xff, 0x06),
        )
        self._flag(0x83, 3, True)
        self._config(
            (0xff, 0x07),
            (0x81, 0x01),

            (0x80, 0x01),

            (0x94, 0x6b),
            (0x83, 0x00),
        )
        for timeout in range(_IO_TIMEOUT):
            if self._register(0x83):
                break
            utime.sleep_ms(1)
        else:
            raise TimeoutError()
        self._config(
            (0x83, 0x01),
        )
        value = self._register(0x92)
        self._config(
            (0x81, 0x00),
            (0xff, 0x06),
        )
        self._flag(0x83, 3, False)
        self._config(
            (0xff, 0x01),
            (0x00, 0x01),

            (0xff, 0x00),
            (0x80, 0x00),
        )
        count = value & 0x7f
        is_aperture = bool(value & 0b10000000)
        return count, is_aperture

    def _calibrate(self, vhv_init_byte):
        self._register(_SYSRANGE_START, 0x01 | vhv_init_byte)
        for timeout in range(_IO_TIMEOUT):
            if self._register(_RESULT_INTERRUPT_STATUS) & 0x07:
                break
            utime.sleep_ms(1)
        else:
            raise TimeoutError()
        self._register(_INTERRUPT_CLEAR, 0x01)
        self._register(_SYSRANGE_START, 0x00)

    def start(self, period=0):
        self._config(
            (0x80, 0x01),
            (0xFF, 0x01),
            (0x00, 0x00),
            (0x91, self._stop_variable),
            (0x00, 0x01),
            (0xFF, 0x00),
            (0x80, 0x00),
        )
        if period:
            oscilator = self._register(_OSC_CALIBRATE, struct='>H')
            if oscilator:
                period *= oscilator
            self._register(_MEASURE_PERIOD, period, struct='>H')
            self._register(_SYSRANGE_START, 0x04)
        else:
            self._register(_SYSRANGE_START, 0x02)
        self._started = True

    def stop(self):
        self._register(_SYSRANGE_START, 0x01)
        self._config(
            (0xFF, 0x01),
            (0x00, 0x00),
            (0x91, self._stop_variable),
            (0x00, 0x01),
            (0xFF, 0x00),
        )
        self._started = False

    def read(self):
        if not self._started:
            self._config(
                (0x80, 0x01),
                (0xFF, 0x01),
                (0x00, 0x00),
                (0x91, self._stop_variable),
                (0x00, 0x01),
                (0xFF, 0x00),
                (0x80, 0x00),
                (_SYSRANGE_START, 0x01),
            )
            for timeout in range(_IO_TIMEOUT):
                if not self._register(_SYSRANGE_START) & 0x01:
                    break
                utime.sleep_ms(1)
            else:
                raise TimeoutError()
        for timeout in range(_IO_TIMEOUT):
            if self._register(_RESULT_INTERRUPT_STATUS) & 0x07:
                break
            utime.sleep_ms(1)
        else:
            raise TimeoutError()
        value = self._register(_RESULT_RANGE_STATUS + 10, struct='>H')
        self._register(_INTERRUPT_CLEAR, 0x01)
        return value

    def set_signal_rate_limit(self, limit_Mcps):
        if limit_Mcps < 0 or limit_Mcps > 511.99:
            return False
        self._register(0x44, limit_Mcps * (1 << 7))
        return True

    def decode_Vcsel_period(self, reg_val):
        return (((reg_val) + 1) << 1)

    def encode_Vcsel_period(self, period_pclks):
        return (((period_pclks) >> 1) - 1)

    def set_Vcsel_pulse_period(self, type, period_pclks):
        vcsel_period_reg = self.encode_Vcsel_period(period_pclks)

        self.get_sequence_step_enables()
        self.get_sequence_step_timeouts()

        if type == self.vcsel_period_type[0]:
            if period_pclks == 12:
                self._register(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18)
            elif period_pclks == 14:
                self._register(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30)
            elif period_pclks == 16:
                self._register(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40)
            elif period_pclks == 18:
                self._register(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50)
            else:
                return False

            self._register(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08)
            self._register(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg)

            new_pre_range_timeout_mclks = self.timeout_microseconds_to_Mclks(self.timeouts["pre_range_us"],
                                                                             period_pclks)
            self._register(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI, self.encode_timeout(new_pre_range_timeout_mclks))

            new_msrc_timeout_mclks = self.timeout_microseconds_to_Mclks(self.timeouts["msrc_dss_tcc_us"],
                                                                        period_pclks)
            self._register(MSRC_CONFIG_TIMEOUT_MACROP, 255 if new_msrc_timeout_mclks > 256 else (new_msrc_timeout_mclks - 1))
        elif type == self.vcsel_period_type[1]:
            if period_pclks == 8:
                self._register(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10)
                self._register(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08)
                self._register(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02)
                self._register(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C)
                self._register(0xFF, 0x01)
                self._register(ALGO_PHASECAL_LIM, 0x30)
                self._register(0xFF, 0x00)
            elif period_pclks == 10:
                self._register(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28)
                self._register(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08)
                self._register(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03)
                self._register(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09)
                self._register(0xFF, 0x01)
                self._register(ALGO_PHASECAL_LIM, 0x20)
                self._register(0xFF, 0x00)
            elif period_pclks == 12:
                self._register(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38)
                self._register(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08)
                self._register(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03)
                self._register(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08)
                self._register(0xFF, 0x01)
                self._register(ALGO_PHASECAL_LIM, 0x20)
                self._register(0xFF, 0x00)
            elif period_pclks == 14:
                self._register(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48)
                self._register(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08)
                self._register(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03)
                self._register(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07)
                self._register(0xFF, 0x01)
                self._register(ALGO_PHASECAL_LIM, 0x20)
                self._register(0xFF, 0x00)
            else:
                return False

            self._register(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg)

            new_final_range_timeout_mclks = self.timeout_microseconds_to_Mclks(self.timeouts["final_range_us"], period_pclks)

            if self.enables["pre_range"]:
                new_final_range_timeout_mclks += 1
            self._register(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, self.encode_timeout(new_final_range_timeout_mclks))
        else:
            return False
        self.set_measurement_timing_budget(self.measurement_timing_budget_us)
        sequence_config = self._register(SYSTEM_SEQUENCE_CONFIG)
        self._register(SYSTEM_SEQUENCE_CONFIG, 0x02)
        self.perform_single_ref_calibration(0x0)
        self._register(SYSTEM_SEQUENCE_CONFIG, sequence_config)

        return True

    def get_sequence_step_enables(self):
        sequence_config = self._register(0x01)

        self.enables["tcc"] = (sequence_config >> 4) & 0x1
        self.enables["dss"] = (sequence_config >> 3) & 0x1
        self.enables["msrc"] = (sequence_config >> 2) & 0x1
        self.enables["pre_range"] = (sequence_config >> 6) & 0x1
        self.enables["final_range"] = (sequence_config >> 7) & 0x1

    def get_vcsel_pulse_period(self, type):
        if type == self.vcsel_period_type[0]:
            return self.decode_Vcsel_period(0x50)
        elif type == self.vcsel_period_type[1]:
            return self.decode_Vcsel_period(0x70)
        else:
            return 255

    def get_sequence_step_timeouts(self):
        self.timeouts["pre_range_vcsel_period_pclks"] = self.get_vcsel_pulse_period(self.vcsel_period_type[0])
        self.timeouts["msrc_dss_tcc_mclks"] = int(self._register(MSRC_CONFIG_TIMEOUT_MACROP)) + 1
        self.timeouts["msrc_dss_tcc_us"] = self.timeout_Mclks_to_microseconds(self.timeouts["msrc_dss_tcc_mclks"],
                                                                              self.timeouts[
                                                                                  "pre_range_vcsel_period_pclks"])
        self.timeouts["pre_range_mclks"] = self.decode_timeout(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI)
        self.timeouts["pre_range_us"] = self.timeout_Mclks_to_microseconds(self.timeouts["pre_range_mclks"],
                                                                           self.timeouts[
                                                                               "pre_range_vcsel_period_pclks"])
        self.timeouts["final_range_vcsel_period_pclks"] = self.get_vcsel_pulse_period(self.vcsel_period_type[1])
        self.timeouts["final_range_mclks"] = self.decode_timeout(self._register(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI))

        if self.enables["pre_range"]:
            self.timeouts["final_range_mclks"] -= self.timeouts["pre_range_mclks"]
        self.timeouts["final_range_us"] = self.timeout_Mclks_to_microseconds(self.timeouts["final_range_mclks"],
                                                                             self.timeouts[
                                                                                 "final_range_vcsel_period_pclks"])

    def timeout_Mclks_to_microseconds(self, timeout_period_mclks, vcsel_period_pclks):
        macro_period_ns = self.calc_macro_period(vcsel_period_pclks)
        return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns / 2)) / 1000

    def timeout_microseconds_to_Mclks(self, timeout_period_us, vcsel_period_pclks):
        macro_period_ns = self.calc_macro_period(vcsel_period_pclks)
        return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns)

    def calc_macro_period(self, vcsel_period_pclks):
        return (((2304 * (vcsel_period_pclks) * 1655) + 500) / 1000)

    def decode_timeout(self, reg_val):
        return ((reg_val & 0x00FF) << ((reg_val & 0xFF00) >> 8)) + 1

    def encode_timeout(self, timeout_mclks):
        timeout_mclks = int(timeout_mclks)
        ls_byte = 0
        ms_byte = 0

        if timeout_mclks > 0:
            ls_byte = timeout_mclks - 1

            while (ls_byte & 0xFFFFFF00) > 0:
                ls_byte >>= 1
                ms_byte += 1
            return (ms_byte << 8) or (ls_byte & 0xFF)
        else:
            return 0

    def set_measurement_timing_budget(self, budget_us):
        start_overhead = 1320
        end_overhead = 960
        msrc_overhead = 660
        tcc_overhead = 590
        dss_overhead = 690
        pre_range_overhead = 660
        final_range_overhead = 550

        min_timing_budget = 20000

        if budget_us < min_timing_budget:
            return False
        used_budget_us = start_overhead + end_overhead

        self.get_sequence_step_enables()
        self.get_sequence_step_timeouts()

        if self.enables["tcc"]:
            used_budget_us += self.timeouts["msrc_dss_tcc_us"] + tcc_overhead
        if self.enables["dss"]:
            used_budget_us += 2* self.timeouts["msrc_dss_tcc_us"] + dss_overhead
        if self.enables["msrc"]:
            used_budget_us += self.timeouts["msrc_dss_tcc_us"] + msrc_overhead
        if self.enables["pre_range"]:
            used_budget_us += self.timeouts["pre_range_us"] + pre_range_overhead
        if self.enables["final_range"]:
            used_budget_us += final_range_overhead

            if used_budget_us > budget_us:
                return False
            final_range_timeout_us = budget_us - used_budget_us
            final_range_timeout_mclks = self.timeout_microseconds_to_Mclks(final_range_timeout_us, self.timeouts["final_range_vcsel_period_pclks"])

            if self.enables["pre_range"]:
                final_range_timeout_mclks += self.timeouts["pre_range_mclks"]
            self._register(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, self.encode_timeout(final_range_timeout_mclks))
            self.measurement_timing_budget_us = budget_us
        return True

    def perform_single_ref_calibration(self, vhv_init_byte):
        
        # Pico MicroPython doesn't have a Chrono class, so the line below is commented out
        # chrono = Timer.Chrono()
        
        self._register(SYSRANGE_START, 0x01|vhv_init_byte)

        # Instead of using the chrono class, I'll just capture the current time
        chrono_start = utime.ticks_ms()
        while self._register((RESULT_INTERRUPT_STATUS & 0x07) == 0):

            # elapsed time is juse the current time minus the start time.
            time_elapsed = utime.ticks_ms() - chrono_start
            if time_elapsed > _IO_TIMEOUT:
                return False
        self._register(SYSTEM_INTERRUPT_CLEAR, 0x01)
        self._register(SYSRANGE_START, 0x00)
        return True



推荐分享
图文皆来源于网络,内容仅做公益性分享,版权归原作者所有,如有侵权请告知删除!
 

Copyright © 2014 ESP56.com All Rights Reserved

执行时间: 0.010055065155029 seconds