Micropython学习交流群 学习QQ群:786510434 提供多种固件下载和学习交流。
Micropython-扇贝物联 QQ群:31324057 扇贝物联是一个让你与智能设备沟通更方便的物联网云平台
Micropython学习交流群 学习QQ群:468985481 学习交流ESP8266、ESP32、ESP8285、wifi模块开发交流、物联网。
Micropython老哥俩的IT农场分享QQ群:929132891 为喜欢科创制作的小白们分享一些自制的计算机软硬件免费公益课程,由两位多年从事IT研发的中年大叔发起。
ESP32(MicroPython) OLED多功能显示(BMP280、SR04、DS18B20、RTC)
本程序实现了对BMP280气压温度传感器、SR04超声波传感器、DS18B20温度传感器、RTC实时时钟的读数和显示。
代码如下
'''
接线:BMP280气压传感器模块
SCL-->25
SDA-->26
OLED(IIC)
SCL-->(18)
SDA-->(23)
DS18B20-->(27)
SR04
trigger-->(12)
echo_pin-->(14)
'''
from machine import Pin,SoftI2C,Timer
from time import sleep
import bmp280
from ssd1306 import SSD1306_I2C
import onewire
import ds18x20
from machine import RTC
from hcsr04 import HCSR04
#初始化OLED
i2c = SoftI2C(sda=Pin(23), scl=Pin(18))
oled = SSD1306_I2C(128, 64, i2c, addr=0x3c)
#定义DS18B20控制对象
ds18b20=ds18x20.DS18X20(onewire.OneWire(Pin(27)))
roms = ds18b20.scan() #扫描是否存在DS18B20设备
#初始化BMP280,定义第二个I2C接口i2c2用于连接BMP280
i2c2 = SoftI2C(sda=Pin(26), scl=Pin(25))
BMP = bmp280.BMP280(i2c2)
#定义RTC控制对象
rtc=RTC()
#定义HCSR04控制对象
hcsr04=HCSR04(trigger_pin=12, echo_pin=14)
#定义星期
week=("Mon","Tue","Wed","Thu","Fri","Sat","Sun")
#中断回调函数
def fun(tim):
oled.fill(0) # 清屏,背景黑色
ds18b20.convert_temp()
date_time=rtc.datetime()
distance=hcsr04.distance_cm()
for rom in roms:
# 温度显示
oled.text("%.2f C" %ds18b20.read_temp(rom), 0, 35)
#时间显示
oled.text(str(date_time[0])+'-'+str(date_time[1])+'-'+str(date_time[2])+' '+str(week[date_time[3]]), 0, 0)
oled.text(str(date_time[4])+':'+str(date_time[5])+':'+str(date_time[6]), 0, 10)
#距离显示
oled.text("%.2f cm"%distance, 0, 25)
# 湿度显示
oled.text(str(BMP.getPress()) + ' Pa', 0, 45)
# 海拔显示
oled.text(str(BMP.getAltitude()) + ' m', 0, 55)
oled.show()
#开启RTOS定时器
tim = Timer(-1)
tim.init(period=200, mode=Timer.PERIODIC, callback=fun) #周期1s
以下是相关头文件
bmp280.py
BMP280_I2C_ADDR = const(0x76)
class BMP280():
def __init__(self, i2c):
self.i2c = i2c
self.dig_T1 = self.get2Reg(0x88)
self.dig_T2 = self.short(self.get2Reg(0x8A))
self.dig_T3 = self.short(self.get2Reg(0x8C))
self.dig_P1 = self.get2Reg(0x8E)
self.dig_P2 = self.short(self.get2Reg(0x90))
self.dig_P3 = self.short(self.get2Reg(0x92))
self.dig_P4 = self.short(self.get2Reg(0x94))
self.dig_P5 = self.short(self.get2Reg(0x96))
self.dig_P6 = self.short(self.get2Reg(0x98))
self.dig_P7 = self.short(self.get2Reg(0x9A))
self.dig_P8 = self.short(self.get2Reg(0x9C))
self.dig_P9 = self.short(self.get2Reg(0x9E))
self.mode = 3
self.osrs_p = 3
self.osrs_t = 1
self.setReg(0xF4, 0x2F)
self.setReg(0xF5, 0x0C)
self.filter = 3
self.T = 0
self.P = 0
self.version = '1.0'
def short(self, dat):
if dat > 32767:
return dat - 65536
else:
return dat
# set reg
def setReg(self, reg, dat):
self.i2c.writeto(BMP280_I2C_ADDR, bytearray([reg, dat]))
# get reg
def getReg(self, reg):
self.i2c.writeto(BMP280_I2C_ADDR, bytearray([reg]))
t = self.i2c.readfrom(BMP280_I2C_ADDR, 1)
return t[0]
# get two reg
def get2Reg(self, reg):
self.i2c.writeto(BMP280_I2C_ADDR, bytearray([reg]))
t = self.i2c.readfrom(BMP280_I2C_ADDR, 2)
return t[0] + t[1]*256
def get(self):
adc_T = (self.getReg(0xFA)<<12) + (self.getReg(0xFB)<<4) + (self.getReg(0xFC)>>4)
var1 = (((adc_T>>3)-(self.dig_T1<<1))*self.dig_T2)>>11
var2 = (((((adc_T>>4)-self.dig_T1)*((adc_T>>4) - self.dig_T1))>>12)*self.dig_T3)>>14
t = var1+var2
self.T = ((t * 5 + 128) >> 8)/100
var1 = (t>>1) - 64000
var2 = (((var1>>2) * (var1>>2)) >> 11 ) * self.dig_P6
var2 = var2 + ((var1*self.dig_P5)<<1)
var2 = (var2>>2)+(self.dig_P4<<16)
var1 = (((self.dig_P3*((var1>>2)*(var1>>2))>>13)>>3) + (((self.dig_P2) * var1)>>1))>>18
var1 = ((32768+var1)*self.dig_P1)>>15
if var1 == 0:
return # avoid exception caused by division by zero
adc_P = (self.getReg(0xF7)<<12) + (self.getReg(0xF8)<<4) + (self.getReg(0xF9)>>4)
p=((1048576-adc_P)-(var2>>12))*3125
if p < 0x80000000:
p = (p << 1) // var1
else:
p = (p // var1) * 2
var1 = (self.dig_P9 * (((p>>3)*(p>>3))>>13))>>12
var2 = (((p>>2)) * self.dig_P8)>>13
self.P = p + ((var1 + var2 + self.dig_P7) >> 4)
return [self.T, self.P]
# get Temperature in Celsius
def getTemp(self):
self.get()
return self.T
# get Pressure in Pa
def getPress(self):
self.get()
return self.P
# Calculating absolute altitude
def getAltitude(self):
return '%.2f'%(44330*(1-(self.getPress()/101325)**(1/5.256)))
# sleep mode
def poweroff(self):
self.setReg(0xF4, 0)
# normal mode
def poweron(self):
self.setReg(0xF4, 0x2F)
hcsr04.py
import machine, time
from machine import Pin
__version__ = '0.2.0'
__author__ = 'Roberto Sánchez'
__license__ = "Apache License 2.0. https://www.apache.org/licenses/LICENSE-2.0"
class HCSR04:
"""
Driver to use the untrasonic sensor HC-SR04.
The sensor range is between 2cm and 4m.
The timeouts received listening to echo pin are converted to OSError('Out of range')
"""
# echo_timeout_us is based in chip range limit (400cm)
def __init__(self, trigger_pin, echo_pin, echo_timeout_us=500*2*30):
"""
trigger_pin: Output pin to send pulses
echo_pin: Readonly pin to measure the distance. The pin should be protected with 1k resistor
echo_timeout_us: Timeout in microseconds to listen to echo pin.
By default is based in sensor limit range (4m)
"""
self.echo_timeout_us = echo_timeout_us
# Init trigger pin (out)
self.trigger = Pin(trigger_pin, mode=Pin.OUT, pull=None)
self.trigger.value(0)
# Init echo pin (in)
self.echo = Pin(echo_pin, mode=Pin.IN, pull=None)
def _send_pulse_and_wait(self):
"""
Send the pulse to trigger and listen on echo pin.
We use the method `machine.time_pulse_us()` to get the microseconds until the echo is received.
"""
self.trigger.value(0) # Stabilize the sensor
time.sleep_us(5)
self.trigger.value(1)
# Send a 10us pulse.
time.sleep_us(10)
self.trigger.value(0)
try:
pulse_time = machine.time_pulse_us(self.echo, 1, self.echo_timeout_us)
return pulse_time
except OSError as ex:
if ex.args[0] == 110: # 110 = ETIMEDOUT
raise OSError('Out of range')
raise ex
def distance_mm(self):
"""
Get the distance in milimeters without floating point operations.
"""
pulse_time = self._send_pulse_and_wait()
# To calculate the distance we get the pulse_time and divide it by 2
# (the pulse walk the distance twice) and by 29.1 becasue
# the sound speed on air (343.2 m/s), that It's equivalent to
# 0.34320 mm/us that is 1mm each 2.91us
# pulse_time // 2 // 2.91 -> pulse_time // 5.82 -> pulse_time * 100 // 582
mm = pulse_time * 100 // 582
return mm
def distance_cm(self):
"""
Get the distance in centimeters with floating point operations.
It returns a float
"""
pulse_time = self._send_pulse_and_wait()
# To calculate the distance we get the pulse_time and divide it by 2
# (the pulse walk the distance twice) and by 29.1 becasue
# the sound speed on air (343.2 m/s), that It's equivalent to
# 0.034320 cm/us that is 1cm each 29.1us
cms = (pulse_time / 2) / 29.1
return cms
ssd1306.py
# MicroPython SSD1306 OLED driver, I2C and SPI interfaces
from micropython import const
import framebuf
# register definitions
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xA4)
SET_NORM_INV = const(0xA6)
SET_DISP = const(0xAE)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xA0)
SET_MUX_RATIO = const(0xA8)
SET_COM_OUT_DIR = const(0xC0)
SET_DISP_OFFSET = const(0xD3)
SET_COM_PIN_CFG = const(0xDA)
SET_DISP_CLK_DIV = const(0xD5)
SET_PRECHARGE = const(0xD9)
SET_VCOM_DESEL = const(0xDB)
SET_CHARGE_PUMP = const(0x8D)
# Subclassing FrameBuffer provides support for graphics primitives
# http://docs.micropython.org/en/latest/pyboard/library/framebuf.html
class SSD1306(framebuf.FrameBuffer):
def __init__(self, width, height, external_vcc):
self.width = width
self.height = height
self.external_vcc = external_vcc
self.pages = self.height // 8
self.buffer = bytearray(self.pages * self.width)
super().__init__(self.buffer, self.width, self.height, framebuf.MONO_VLSB)
self.init_display()
def init_display(self):
for cmd in (
SET_DISP | 0x00, # off
# address setting
SET_MEM_ADDR,
0x00, # horizontal
# resolution and layout
SET_DISP_START_LINE | 0x00,
SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0
SET_MUX_RATIO,
self.height - 1,
SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0
SET_DISP_OFFSET,
0x00,
SET_COM_PIN_CFG,
0x02 if self.width > 2 * self.height else 0x12,
# timing and driving scheme
SET_DISP_CLK_DIV,
0x80,
SET_PRECHARGE,
0x22 if self.external_vcc else 0xF1,
SET_VCOM_DESEL,
0x30, # 0.83*Vcc
# display
SET_CONTRAST,
0xFF, # maximum
SET_ENTIRE_ON, # output follows RAM contents
SET_NORM_INV, # not inverted
# charge pump
SET_CHARGE_PUMP,
0x10 if self.external_vcc else 0x14,
SET_DISP | 0x01,
): # on
self.write_cmd(cmd)
self.fill(0)
self.show()
def poweroff(self):
self.write_cmd(SET_DISP | 0x00)
def poweron(self):
self.write_cmd(SET_DISP | 0x01)
def contrast(self, contrast):
self.write_cmd(SET_CONTRAST)
self.write_cmd(contrast)
def rotate(self, rotate):
self.write_cmd(SET_COM_OUT_DIR | ((rotate & 1) << 3))
self.write_cmd(SET_SEG_REMAP | (rotate & 1))
def invert(self, invert):
self.write_cmd(SET_NORM_INV | (invert & 1))
def show(self):
x0 = 0
x1 = self.width - 1
if self.width == 64:
# displays with width of 64 pixels are shifted by 32
x0 += 32
x1 += 32
self.write_cmd(SET_COL_ADDR)
self.write_cmd(x0)
self.write_cmd(x1)
self.write_cmd(SET_PAGE_ADDR)
self.write_cmd(0)
self.write_cmd(self.pages - 1)
self.write_data(self.buffer)
class SSD1306_I2C(SSD1306):
def __init__(self, width, height, i2c, addr=0x3C, external_vcc=False):
self.i2c = i2c
self.addr = addr
self.temp = bytearray(2)
self.write_list = [b"\x40", None] # Co=0, D/C#=1
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.temp[0] = 0x80 # Co=1, D/C#=0
self.temp[1] = cmd
self.i2c.writeto(self.addr, self.temp)
def write_data(self, buf):
self.write_list[1] = buf
self.i2c.writevto(self.addr, self.write_list)
class SSD1306_SPI(SSD1306):
def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
self.rate = 10 * 1024 * 1024
dc.init(dc.OUT, value=0)
res.init(res.OUT, value=0)
cs.init(cs.OUT, value=1)
self.spi = spi
self.dc = dc
self.res = res
self.cs = cs
import time
self.res(1)
time.sleep_ms(1)
self.res(0)
time.sleep_ms(10)
self.res(1)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs(1)
self.dc(0)
self.cs(0)
self.spi.write(bytearray([cmd]))
self.cs(1)
def write_data(self, buf):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs(1)
self.dc(1)
self.cs(0)
self.spi.write(buf)
self.cs(1)
————————————————
版权声明:本文为CSDN博主「路易斯720」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_74155302/article/details/131013010
Copyright © 2014 ESP56.com All Rights Reserved
执行时间: 0.006882905960083 seconds